Polylogarithm

In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the … See more In the case where the order $${\displaystyle s}$$ is an integer, it will be represented by $${\displaystyle s=n}$$ (or $${\displaystyle s=-n}$$ when negative). It is often convenient to define Depending on the … See more • For z = 1, the polylogarithm reduces to the Riemann zeta function Li s ⁡ ( 1 ) = ζ ( s ) ( Re ⁡ ( s ) > 1 ) . {\displaystyle \operatorname {Li} … See more 1. As noted under integral representations above, the Bose–Einstein integral representation of the polylogarithm may be extended to negative orders s by means of See more The dilogarithm is the polylogarithm of order s = 2. An alternate integral expression of the dilogarithm for arbitrary complex argument z is (Abramowitz & Stegun 1972, § 27.7): See more For particular cases, the polylogarithm may be expressed in terms of other functions (see below). Particular values for the polylogarithm may thus also be found as particular … See more Any of the following integral representations furnishes the analytic continuation of the polylogarithm beyond the circle of convergence z = 1 of the defining power series. 1. The polylogarithm can be expressed in terms of the integral … See more For z ≫ 1, the polylogarithm can be expanded into asymptotic series in terms of ln(−z): where B2k are the See more WebThe polylogarithm function (or Jonquière's function) of index and argument is a special function, defined in the complex plane for and by analytic continuation otherwise. It can be plotted for complex values ; for example, along the celebrated critical line for Riemann's zeta function [1]. The polylogarithm function appears in the Fermi–Dirac and Bose–Einstein …

Approximation of The Polylogarithm on the interval (-1, 1)

WebThe dilogarithm function (sometimes called Euler’s dilogarithm function) is a special case of the polylogarithm that can be traced back to the works of Leonhard Euler. The function re … WebZeta Functions and Polylogarithms PolyLog [ nu, z] Identities. Recurrence identities. General cases. Involving two polyilogarithms. Involving several polylogarithms. port in tampa where carnival cruises from https://larryrtaylor.com

Trilogarithm -- from Wolfram MathWorld

WebPolylogarithms of Numeric and Symbolic Arguments. polylog returns floating-point numbers or exact symbolic results depending on the arguments you use. Compute the polylogarithms of numeric input arguments. The polylog function returns floating-point numbers. Li = [polylog (3,-1/2), polylog (4,1/3), polylog (5,3/4)] Webpolylog(2,x) is equivalent to dilog(1 - x). The logarithmic integral function (the integral logarithm) uses the same notation, li(x), but without an index.The toolbox provides the logint function to compute the logarithmic integral function.. Floating-point evaluation of the polylogarithm function can be slow for complex arguments or high-precision numbers. port in tasmania

[math/9910045] Special Values of Multiple Polylogarithms

Category:arXiv:2304.04061v1 [math.AG] 8 Apr 2024

Tags:Polylogarithm

Polylogarithm

Approximation of The Polylogarithm on the interval (-1, 1)

WebApr 12, 2024 · In this paper, we introduce and study a new subclass S n β,λ,δ,b (α), involving polylogarithm functions which are associated with differential operator. we also obtain coefficient estimates ... WebOct 24, 2024 · In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Li s (z) of order s and argument z.Only for special …

Polylogarithm

Did you know?

WebContour integral representations (2 formulas) Multiple integral representations (1 formula) PolyLog [ nu, p, z] PolyLog [2, z] Webtween multiple polylogarithm values at Nth roots of unity, Racinet attached to each finite cyclic group G of order N and each group embedding ι : G → C×, a Q-scheme DMRι which associates to each commutative Q-algebra k, a set DMRι(k) that can be decomposed as a disjoint union of sets DMRι λ(k) with λ ∈ k. He also exhibited a Q-

WebThe Polylogarithm is also known as Jonquiere's function. It is defined as ∑ k = 1 ∞ z k / k n = z + z 2 / 2 n +... The polylogarithm function arises, e.g., in Feynman diagram integrals. It also arises in the closed form of the integral of the Fermi-Dirac and the Bose-Einstein distributions. The special cases n=2 and n=3 are called the ... WebBoundary behavior of a given important function or its limit values are essential in the whole spectrum of mathematics and science. We consider some tractable cases of limit values in which either a difference of two ingredients or a difference equation is used coupled with the relevant functional equations to give rise to unexpected results. As main results, this …

WebThe Wolfram Language supports zeta and polylogarithm functions of a complex variable in full generality, performing efficient arbitrary-precision evaluation and implementing extensive symbolic transformations. Zeta — Riemann and generalized Riemann zeta function. RiemannSiegelZ RiemannSiegelTheta StieltjesGamma RiemannXi. WebDec 11, 2024 · Abstract. Gamma and Polylogarithm identities completely deduced, producing others related identities and applied in solving some definite integrals.The analysis involves Riemann Zeta, Dirichlet ...

WebThere's a GPL'd C library, ANANT - Algorithms in Analytic Number Theory by Linas Vepstas, which includes multiprecision implementation of the polylogarithm, building on GMP. …

WebJun 26, 2015 · Polylogarithm ladders provide the basis for the rapid computations of various mathematical constants by means of the BBP algorithm (Bailey, Borwein & Plouffe 1997)), monodromy group for the polylogarithm (Heisenberg group) Share. Improve this … port in tcpWebMar 3, 1997 · We prove a special representation of the polylogarithm function in terms of series with such numbers. Using … Expand. 1. PDF. Save. Alert. Identities Involving Generalized Harmonic Numbers and Other Special Combinatorial Sequences. Huyile Liang; Mathematics. 2012; port in tescoWebSome other important sources of information on polylogarithm functions are the works of References and . In References [ 5 ] and [ 6 ], the authors explore the algorithmic and analytic properties of generalized harmonic Euler sums systematically, in order to compute the massive Feynman integrals which arise in quantum field theories and in certain … port in teluguWebMay 18, 2009 · The nth order polylogarithm Li n (z) is defined for z ≦ 1 by ([4, p. 169], cf. [2, §1. 11 (14) and § 1. 11. 1]). The definition can be extended to all values of z in the z-plane cut along the real axis from 1 to ∝ by the formula [2, §1. 11(3)]. Then Li n (z) is regular in the cut plane, and there is a differential recurrence relation ... port in telecomWebDifferentiation (12 formulas) PolyLog. Zeta Functions and Polylogarithms PolyLog[nu,z] port in texas for containersWebOct 8, 1999 · Historically, the polylogarithm has attracted specialists and non-specialists alike with its lovely evaluations. Much the same can be said for Euler sums (or multiple harmonic sums), which, within the past decade, have arisen in combinatorics, knot theory and high-energy physics. More recently, we have been forced to consider … port in team attWebpolylog(2,x) is equivalent to dilog(1 - x). The logarithmic integral function (the integral logarithm) uses the same notation, li(x), but without an index.The toolbox provides the logint function to compute the logarithmic … irn indofood