In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the … See more In the case where the order $${\displaystyle s}$$ is an integer, it will be represented by $${\displaystyle s=n}$$ (or $${\displaystyle s=-n}$$ when negative). It is often convenient to define Depending on the … See more • For z = 1, the polylogarithm reduces to the Riemann zeta function Li s ( 1 ) = ζ ( s ) ( Re ( s ) > 1 ) . {\displaystyle \operatorname {Li} … See more 1. As noted under integral representations above, the Bose–Einstein integral representation of the polylogarithm may be extended to negative orders s by means of See more The dilogarithm is the polylogarithm of order s = 2. An alternate integral expression of the dilogarithm for arbitrary complex argument z is (Abramowitz & Stegun 1972, § 27.7): See more For particular cases, the polylogarithm may be expressed in terms of other functions (see below). Particular values for the polylogarithm may thus also be found as particular … See more Any of the following integral representations furnishes the analytic continuation of the polylogarithm beyond the circle of convergence z = 1 of the defining power series. 1. The polylogarithm can be expressed in terms of the integral … See more For z ≫ 1, the polylogarithm can be expanded into asymptotic series in terms of ln(−z): where B2k are the See more WebThe polylogarithm function (or Jonquière's function) of index and argument is a special function, defined in the complex plane for and by analytic continuation otherwise. It can be plotted for complex values ; for example, along the celebrated critical line for Riemann's zeta function [1]. The polylogarithm function appears in the Fermi–Dirac and Bose–Einstein …
Approximation of The Polylogarithm on the interval (-1, 1)
WebThe dilogarithm function (sometimes called Euler’s dilogarithm function) is a special case of the polylogarithm that can be traced back to the works of Leonhard Euler. The function re … WebZeta Functions and Polylogarithms PolyLog [ nu, z] Identities. Recurrence identities. General cases. Involving two polyilogarithms. Involving several polylogarithms. port in tampa where carnival cruises from
Trilogarithm -- from Wolfram MathWorld
WebPolylogarithms of Numeric and Symbolic Arguments. polylog returns floating-point numbers or exact symbolic results depending on the arguments you use. Compute the polylogarithms of numeric input arguments. The polylog function returns floating-point numbers. Li = [polylog (3,-1/2), polylog (4,1/3), polylog (5,3/4)] Webpolylog(2,x) is equivalent to dilog(1 - x). The logarithmic integral function (the integral logarithm) uses the same notation, li(x), but without an index.The toolbox provides the logint function to compute the logarithmic integral function.. Floating-point evaluation of the polylogarithm function can be slow for complex arguments or high-precision numbers. port in tasmania